

TRIGONOMETRY AND ANALYTIC GEOMETRY 4º ESO

Exercise 1: (1.75 ptos)

a) (1.25) Find the three principal trigonometric functions of $\alpha = \frac{11\pi}{6} rad$ without using a calculator

$$\sin\frac{11\pi}{6} = \frac{-1}{2}$$

$$\cos\frac{11\pi}{6} = \frac{\sqrt{3}}{2}$$

$$\sin\frac{11\pi}{6} = \frac{-1}{2}$$
 $\cos\frac{11\pi}{6} = \frac{\sqrt{3}}{2}$ $\tan\frac{11\pi}{6} = \frac{-\sqrt{3}}{3}$

b) (0.5) Transform $\frac{8\pi}{15}$ rad into degrees, and 165° into radians

$$\frac{8\pi}{15}$$
 rad = 96°

$$\frac{8\pi}{15}$$
 rad = 96° $165^{\circ} = \frac{11\pi}{12}$ rad

Exercise 2: (1 pto) Given the vectors $\vec{u} = (-1, 4)$, $\vec{v} = (4, -7)$ and $\vec{w} = (-2, 5)$ write \vec{v} as a linear combination of \vec{u} and $\vec{w} \rightarrow \vec{v} = 2\vec{u} - 3\vec{w}$

Exercise 3: (1 pto) If $\tan \alpha = -0.75$, $\frac{\pi}{2} < \alpha < \pi$ find the values of $\cos \alpha$, $\sin \alpha$ and the angle α $\sin \alpha = 0.6$ $\alpha = 143.13^{\circ} = 143^{\circ}7'48''$ $\cos \alpha = -0.8$

Exercise 4: (2.25 ptos)

a) (1.25) Determine if the triangle given by A(8,4), B(6,7) and C(9,9) has a right angle and work out its perimeter.

$$\overrightarrow{AB} \cdot \overrightarrow{BC} = 0 \rightarrow \overrightarrow{AB} \perp \overrightarrow{BC}$$

 $P = 2\sqrt{13} + \sqrt{26} = 12.31 \text{ u}$

b) (1) Find the general equation of the line that goes through the points P(-2,7) and B(4,1)x + y - 5 = 0

Exercise 5: (2.5 ptos) Given the straight line $r = \frac{x-5}{2} = y+3$ work out:

- a) (1) The general equation of a parallel line going through $P(2,-4) \rightarrow x-2y-10=0$
- b) (1) The general equation of a perpendicular line going through $Q(3,7) \rightarrow 2x + y 13 = 0$

c) (0.5) The parametric equations of
$$r \to r = \begin{cases} x = 5 + 2t \\ y = -3 + t \end{cases}$$
 $t \in \mathbb{R}$

Exercise 6: (1.5 ptos) Given the points A(k,3), B(6,5) and C(k+3,k+1) find the value of k so that the triangle that they form is isosceles in $B \rightarrow k = -3$, k = 5

