

REAL NUMBERS, POLYNOMIALS AND FRACTIONS TEST - 4° ESO

Exercise 1: (3.25 points) Work out the value of the following expressions and simplify if possible:

a)
$$\frac{x^2 - 9}{x^2 - 1}$$
: $\frac{x^2 - 6x + 9}{x^2 - 2x + 1} = \frac{x^2 + 2x - 3}{x^2 - 2x - 3}$ (1)

b)
$$\frac{x^2 - 10x + 25}{9x^4 - 45x^3} \cdot \frac{3x^3 + 15x^2}{x^2 - 25} = \frac{1}{3x}$$
 (1)

c)
$$\frac{x^3 - 2x^2 - 13x - 10}{x^3 - 4x^2 - 5x} = \frac{x + 2}{x}$$
 (1.25)

Exercise 2: (0.5 points) Find the value of k so that the polynomial $P(x) = x^4 + kx^3 - 5x^2 + 6x$ is a multiple of (x-2) k=-1

Exercise 3: (1.25 points) Rationalize the following expressions:

a)
$$\frac{35}{\sqrt[9]{7^6}} = 5\sqrt[9]{7^3}$$

b)
$$\frac{3}{\sqrt{3}} = \sqrt{3}$$

c)
$$\frac{\sqrt{7} + \sqrt{2}}{\sqrt{7} - \sqrt{2}} = \frac{9 + 2\sqrt{14}}{5}$$

Exercise 4: (0.75 points) Find the percentage error when rounding $\sqrt{7}$ to the nearest thousandths $E_p = 0.0094\%$

Exercise 5: (1 point) Study the following unions and intersections of intervals and write them as inequalities too:

a)
$$(-\infty, 2] \cup [1, 7) = (-\infty, 7) \rightarrow x < 7$$

b)
$$(-5,-2] \cap (-3,1] = (-3,-2] \rightarrow -3 < x \le -2$$

Exercise 6: (1 point) Solve and factorize the equation $P(x) = x^5 + x^4 - 34x^3 - 34x^2 + 225x + 225$

Roots:
$$x = -1$$
, $x = \pm 3$, $x = \pm 5$

Factorization:
$$(x+1)(x+3)(x-3)(x+5)(x-5)$$

Exercise 7: (2.25 points) Work out, express as a single radical and simplify if possible:

a)
$$\sqrt{405} - 7\sqrt{320} + 2\sqrt{125} = -37\sqrt{5}$$

b)
$$\frac{\sqrt[6]{2^5 \cdot 7^{-3}}}{\sqrt[5]{7^{-4} \cdot 2^3}} = \sqrt[30]{2^7 \cdot 7^9}$$

c)
$$\left(\sqrt[5]{x^{-4}} : \sqrt{x^5}\right) \cdot \left(\sqrt[3]{x^2} : \sqrt[7]{x^{-3}}\right) = \frac{1}{x^2} \cdot 210 \sqrt{\frac{1}{x^{43}}}$$

