PROBABILIDAD

Sean A y B dos sucesos de un espacio aleatorio E. Sea P una medida de la probabilidad definida en E. Entonces se verifican las siguientes propiedades:

- -) $0 \le P(A), P(B) \le 1$
- -) $P(\emptyset) = 0$, donde \emptyset representa al suceso imposible
- -) P(E) = 1
- -) Si \overline{A} es el suceso contrario de A, entonces $P(\overline{A}) = 1 P(A)$
- -) $A \cap B \equiv A y B$, suceden los dos a la vez
- -) $A \cup B \equiv A \circ B$, sucede alguno de los dos
- -) $\overline{A} \cap \overline{B} \equiv \text{ni A ni B}$, no sucede ninguno de los dos
- -) Dos sucesos A y B son incompatibles si no pueden suceder a la vez, es decir,

$$A \cap B = \emptyset \Rightarrow P(A \cap B) = 0$$

- -) $P(A \cap B) \leq P(A), P(B)$
- -) $P(A), P(B) \leq P(A \cup B)$
- -) $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- -) $P(A \cap B) = P(A) P(A \cap B)$

-)
$$\frac{P(\overline{A} \cup \overline{B}) = P(\overline{A \cap B})}{P(\overline{A} \cap \overline{B}) = P(\overline{A \cup B})}$$
 Leyes de Morgan

-) Probabilidad condicionada: La probabilidad de que ocurra el suceso A sabiendo que ha ocurrido el suceso B viene dada por

$$P(A/B) = \frac{P(A \cap B)}{P(B)}$$
 siempre que P(B) \neq 0

- -) Dos sucesos son independientes si sucede una de estas dos cosas:
 - a) $P(A \cap B) = P(A)P(B)$
 - b) P(A/B) = P(A), P(B/A) = P(B)
- -) Se dice que un conjunto de sucesos forman un sistema completo de sucesos del espacio muestral E si
 - a) $A_i \cap A_i = \emptyset$, es decir, son incompatibles
 - b) Los A_i recubren E, es decir, $\cup A_i = E$
 - c) La suma de las probabilidades de todos los sucesos es 1, $\sum P(A_i) = 1$
- -) Teorema de la probabilidad total: Sea $S=\{A_i\}$ un sistema completo de sucesos. Sea un suceso B cualquiera del espacio E. Entonces

$$P(B) = P(B/A_1)P(A_1) + P(B/A_2)P(A_2) + P(B/A_3)P(A_3) + \cdots + P(B/A_n)P(A_n)$$

-)Teorema de Bayes: Sea S un sistema completo de sucesos

$$P(A_i/B) = \frac{P(B/A_i)P(A_i)}{P(B/A_1)P(A_1) + P(B/A_2)P(A_2) + \dots + P(B/A_n)P(A_n)}$$

En la práctica no se utiliza el Teorema de Bayes, sino que se aplica la fórmula de la probabilidad condicionada al diagrama de árbol